Infinite Exchanges

Davide Rizza, UEA

NHS, April 25th 2018

Numerical measures of sets

Infinite Exchanges

Where next?

- When we count we go through the progression:

$$
1,2,3, \ldots, n, \ldots,
$$

- However, often in mathematics we speak of the entire set \mathbb{N}.
- In set theory, we wish to determine and compare the sizes of sets like \mathbb{N}, which we call infinite.
- In order to do so we look for one-to-one correspondences as indicators of equal sizes.
- The progressions:

1	2	3	4	\ldots
2	3	4	5	\ldots
3	6	9	12	\ldots

- are assigned the same size, symbolised by \aleph_{0}. They all diverge to ∞.
- From the standpoint proposed by Yaroslav Sergeyev \aleph_{0} is a relatively inaccurate esteem.
- Since we cannot see tails, we think of the indefinite progressions as equivalent.
- We see what we can denote by a number, so let us take (1) to denote the number of elements in \mathbb{N}.
- We can now count the number of items in our sequences, knowing how that they must end after a specifiable number of infinitely many steps.

$$
\begin{array}{ccccccc}
1 & 2 & 3 & 4 & \ldots & (1)-2 & (1)-1 \tag{1}\\
2-1 & 3-1 & 4-1 & 5-1 & \ldots & (1)-1)-1 & (1)-1
\end{array}
$$

- Note that there is no one-to-one correspondence between the two sequences above. One has (1)>(1)-1 elements.
- If we take away one in every three elements along the first sequence below, we are left with (1)/3 elements.

$$
\begin{array}{lllllllllll}
1 & 2 & 3 & 4 & \ldots & \frac{1}{3}-1 & \frac{(1)}{3} & \frac{1}{3}+1 & \ldots & (1)-1 & (1) \\
3 & 6 & 9 & 12 & \ldots & (1)-3 & (1) & (1)+3 & \ldots & 3(1)-3 & 3(1)
\end{array}
$$

- There are only (1)/3 multiples of 3 in \mathbb{N}, since anything greater than (1) is not in \mathbb{N}.
- Note that we are NOT replacing ∞ (or \aleph_{0}) with a new symbol (1). This would not change anything.
- Instead, we take ∞ or \aleph_{0} to collapse infinitely many distinctions, which are visible by means of (1):
∞

$$
\ldots \frac{(1)}{3}, \frac{(1)}{3}+1 \ldots \frac{(1)}{2}-1, \frac{(1)}{2}, \ldots,(1)-1,(1),(1)+1,(1)+2, \ldots
$$

$$
\aleph_{0}
$$

- To do this is helpful because it allows us to extend the class of mathematical problems that we can treat numerically.
- In general, we obtain an expansion of the purview of numerical analysis in applications.
- The simplest cases in which this happens are puzzles that derive from inaccurate discriminations of size at infinity.
- Suppose that we have labelled a collection of ping-pong balls with the symbols $1,2,3, \ldots$.
- If there are as many ping-pong balls as there are numbers in \mathbb{N}, each available label of the form n is used, for $n \in \mathbb{N}$.
- Note: which labels we can work with depends on our notation for numbers, which may not include anything like (1).
- Suppose that all of our ping-pong balls are kept in a large urn.
- Stage 0: take out those with labels $1,2,3$, and return the ball with label 1.
- Stage 1: take out the balls with labels $4,5,6$ and return the one with label 2.
- Stage n : take out those with labels $3 n+1,3 n+2,3 n+3$ $(n \geq 0)$ and return the one with label $n+1$.
- If we reason with actual infinity, we have taken out two ping-pong balls infinitely many times.
- We expect $2 \cdot \aleph_{0}=\aleph_{0}$ ping-pong balls out of the urn.
- If we reason with potential infinity, we see that, at stage $n-1$ in our procedure, we return the ball with label n.
- We do it for each finite n. We expect 0 balls out of the urn.
- Suppose that a supply of (1) labels is available and that each ping-pong ball is labelled, using this supply.
- At each stage we take three distinct balls. We cannot go through (1) stages, which would require 3(1) > (1) distinct balls.
- In the last stage, we have $3 n+3=(1)$, whence $n=(1) / 3-1$. There are (1) $/ 3$ stages $0,1,2,3, \ldots$, (1) $/ 3-1$.
- In the last stage, we have $3 n+3=(1)$, whence $n=(1) / 3-1$. There are (1)/3 stages $0,1,2,3, \ldots,(1) / 3-1$.
- The last three balls we consider are:

$$
3(1) / 3-1)+1,3(1) / 3-1)+2,3(1) / 3-1)+3=\text { (1). }
$$

- In the last stage, we have $3 n+3=(1)$, whence $n=(1) / 3-1$. There are (1)/3 stages $0,1,2,3, \ldots,(1) / 3-1$.
- The last three balls we consider are:

$$
3(1) / 3-1)+1,3(1) / 3-1)+2,3(1) / 3-1)+3=\text { (1). }
$$

- The last ball we return has label $n+1$, with $n=(1) / 3-1$.
- In the last stage, we have $3 n+3=(1)$, whence $n=(1) / 3-1$. There are (1)/3 stages $0,1,2,3, \ldots$, (1) $/ 3-1$.
- The last three balls we consider are:

$$
3(1) / 3-1)+1,3(1) / 3-1)+2,3(1) / 3-1)+3=\text { (1). }
$$

- The last ball we return has label $n+1$, with $n=(1) / 3-1$.
- At each stage, we keep two ping-pong balls. Altogether, we have taken $2(1) / 3)$ out of the urn.
- In the last stage, we have $3 n+3=(1)$, whence $n=(1) / 3-1$. There are (1) $/ 3$ stages $0,1,2,3, \ldots,(1) / 3-1$.
- The last three balls we consider are:

$$
3(1) / 3-1)+1,3(1) / 3-1)+2,3(1) / 3-1)+3=\text { (1). }
$$

- The last ball we return has label $n+1$, with $n=(1) / 3-1$.
- At each stage, we keep two ping-pong balls. Altogether, we have taken 2(1)/3) out of the urn.
- Clearly, (1)/3 ping-pong balls remain in the urn.
- If we had been taking and returning dollar bills, we would have faced an infinite decision problem with payoffs.
- Infinite decisions can be handled numerically if one can effect computations in base (1).
- How far can one develop the theory of utility and probability using (1)? Work in progress ...

THANK YOU!

