Infinite Exchanges

Davide Rizza, UEA

NHS, April 25th 2018

Numerical measures of sets

Infinite Exchanges

Where next?

▶ When we count we go through the progression:

$$1, 2, 3, \ldots, n, \ldots,$$

▶ However, often in mathematics we speak of the *entire* set \mathbb{N} .

- ▶ In set theory, we wish to determine and compare the sizes of sets like \mathbb{N} , which we call infinite.
- ▶ In order to do so we look for one-to-one correspondences as indicators of equal sizes.

▶ The progressions:

▶ are assigned the same size, symbolised by \aleph_0 . They all diverge to ∞ .

- ▶ From the standpoint proposed by Yaroslav Sergeyev \aleph_0 is a relatively inaccurate esteem.
- Since we cannot see tails, we think of the indefinite progressions as equivalent.
- ▶ We see what we can denote by a number, so let us take ① to denote the number of elements in \mathbb{N} .

- ▶ We can now count the number of items in our sequences, knowing how that they must end after a specifiable number of infinitely many steps.
 - $1 \qquad 2 \qquad 3 \qquad 4 \qquad \dots \qquad \textcircled{1}-2 \qquad \textcircled{1}-1 \quad \textcircled{1}$
 - 2-1 3-1 4-1 5-1 ... (① -1) -1 ① -1
- Note that there is no one-to-one correspondence between the two sequences above. One has @ > @ 1 elements.

- ▶ If we take away one in every three elements along the first sequence below, we are left with $\bigcirc/3$ elements.
 - 1 2 3 4 ... $\frac{\textcircled{1}}{3} 1$ $\frac{\textcircled{1}}{3}$ $\frac{\textcircled{1}}{3} + 1$... 1 1 1
 - $3 \ 6 \ 9 \ 12 \ \dots \ 0 3 \ 0 \ 1 + 3 \ \dots \ 30 3 \ 30$
- ▶ There are only @/3 multiples of 3 in \mathbb{N} , since anything greater than @ is not in \mathbb{N} .

- Note that we are NOT replacing ∞ (or \aleph_0) with a new symbol ①. This would not change anything.
- ▶ Instead, we take ∞ or ℵ₀ to collapse infinitely many distinctions, which are visible by means of ①:

$$\infty$$

$$\dots \frac{\cancel{0}}{\cancel{3}}, \frac{\cancel{0}}{\cancel{3}} + 1 \dots \frac{\cancel{0}}{\cancel{2}} - 1, \frac{\cancel{0}}{\cancel{2}}, \dots, \cancel{0} - 1, \cancel{0}, \cancel{0} + 1, \cancel{0} + 2, \dots$$

$$\aleph_0$$

- ▶ To do this is helpful because it allows us to extend the class of mathematical problems that we can treat numerically.
- ▶ In general, we obtain an expansion of the purview of numerical analysis in applications.
- ► The simplest cases in which this happens are puzzles that derive from inaccurate discriminations of size at infinity.

- ► Suppose that we have labelled a collection of ping-pong balls with the symbols 1, 2, 3,
- ▶ If there are as many ping-pong balls as there are numbers in \mathbb{N} , each available label of the form n is used, for $n \in \mathbb{N}$.
- ▶ Note: which labels we can work with depends on our *notation for numbers*, which may not include anything like ①.

- Suppose that all of our ping-pong balls are kept in a large urn.
- ► Stage 0: take out those with labels 1, 2, 3, and return the ball with label 1.
- ► Stage 1: take out the balls with labels 4, 5, 6 and return the one with label 2.
- Stage n: take out those with labels 3n + 1, 3n + 2, 3n + 3 $(n \ge 0)$ and return the one with label n + 1.

- ▶ If we reason with actual infinity, we have taken out two ping-pong balls infinitely many times.
- ▶ We expect $2 \cdot \aleph_0 = \aleph_0$ ping-pong balls out of the urn.
- ▶ If we reason with potential infinity, we see that, at stage n-1 in our procedure, we return the ball with label n.
- ▶ We do it for each finite *n*. We expect 0 balls out of the urn.

- ► Suppose that a supply of ① labels is available and that each ping-pong ball is labelled, using this supply.
- ▶ At each stage we take three distinct balls. We cannot go through ① stages, which would require 3① > ① distinct balls.

▶ In the last stage, we have 3n + 3 = ①, whence n = ①/3 - 1. There are 0/3 stages 0, 1, 2, 3, ..., 0/3 - 1.

- ▶ In the last stage, we have 3n + 3 = ①, whence n = ①/3 1. There are 0/3 stages 0, 1, 2, 3, ..., 0/3 - 1.
- ▶ The last three balls we consider are:

$$3(\sqrt[3]{3}-1)+1, 3(\sqrt[3]{3}-1)+2, 3(\sqrt[3]{3}-1)+3=\sqrt[3]{2}.$$

- ▶ In the last stage, we have 3n + 3 = ①, whence n = ①/3 1. There are 0/3 stages 0, 1, 2, 3, ..., 0/3 - 1.
- ▶ The last three balls we consider are:

$$3(\sqrt[3]{3}-1)+1, 3(\sqrt[3]{3}-1)+2, 3(\sqrt[3]{3}-1)+3=\sqrt[3]{2}$$

▶ The last ball we return has label n + 1, with n = ①/3 - 1.

- ▶ In the last stage, we have 3n + 3 = ①, whence n = ①/3 1. There are 0/3 stages 0, 1, 2, 3, ..., 0/3 - 1.
- ▶ The last three balls we consider are:

$$3(\sqrt[3]{3}-1)+1, 3(\sqrt[3]{3}-1)+2, 3(\sqrt[3]{3}-1)+3=\sqrt[3]{2}.$$

- ▶ The last ball we return has label n + 1, with n = ①/3 1.
- ► At each stage, we keep two ping-pong balls. Altogether, we have taken 2(①/3) out of the urn.

- ▶ In the last stage, we have 3n + 3 = ①, whence n = ①/3 1. There are 0/3 stages 0, 1, 2, 3, ..., 0/3 - 1.
- ▶ The last three balls we consider are:

$$3(\sqrt[3]{3}-1)+1, 3(\sqrt[3]{3}-1)+2, 3(\sqrt[3]{3}-1)+3=\sqrt[3]{2}.$$

- ▶ The last ball we return has label n + 1, with n = ①/3 1.
- ► At each stage, we keep two ping-pong balls. Altogether, we have taken 2(①/3) out of the urn.
- ► Clearly, ①/3 ping-pong balls remain in the urn.

- ▶ If we had been taking and returning dollar bills, we would have faced an infinite decision problem with payoffs.
- ▶ Infinite decisions can be handled numerically if one can effect computations in base ①.
- ► How far can one develop the theory of utility and probability using ①? Work in progress . . .

THANK YOU!