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Counting One reason why this is helpful

I We often use numbers to count things.

I When we do it step by step, we use a scale of symbols 1, 2, . . .
to order the items we count one after the other.

I This process the application of a scale of numerals by a
one-to-one correspondence.
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Counting One reason why this is helpful

I We handle cases where our count ends. Thus, we only use an
initial segment of our scale, e.g. 1, 2, . . . , n − 1, n.

I An application of an initial segment endows the collection of
objects we have ordered with a numerical determination.

I This process makes use both of an ordered disposition of
things and of a terminating point on the scale.
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I If we decide to generalise numbers, it seems reasonable to rely
on more terminating points and keep applying initial segments.

I The notation 1, 2, 3, . . . identifies a limitation.

I We can apply initial segments only as long as they have a
finite terminating point. We need more terminating points.
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I We extend our notation as follows:

1, 2, 3, . . . ,¬− 1,¬,¬ + 1, . . ..

I Any term that contains ¬ (grossone) comes after all finite
terms. In particular, the term ¬ marks off N.

I We now think of N as the canonical completed sequence

1, 2, 3, . . . ,¬− 2,¬− 1,¬
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Counting One reason why this is helpful

I We can classify sequential processes that involve infinitely
many stages.

I If a process has features that vary at every stage, we can keep
track of them after infinitely many, not only finitely many
stages.

I We can study fractals that evolve from different starting
points to different points at infinity, compute their area and
perimeter.
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The Koch Snowflake (Helge von Koch 1904)

Davide Rizza, University of East Anglia, Norwich UK d.rizza@uea.ac.uk

Fractal Snowflakes



Counting One reason why this is helpful

The Koch Snowflake (Helge von Koch 1904)

Davide Rizza, University of East Anglia, Norwich UK d.rizza@uea.ac.uk

Fractal Snowflakes



Counting One reason why this is helpful

The Koch Snowflake (Helge von Koch 1904)

Davide Rizza, University of East Anglia, Norwich UK d.rizza@uea.ac.uk

Fractal Snowflakes



Counting One reason why this is helpful

The Koch Snowflake (Helge von Koch 1904)

Davide Rizza, University of East Anglia, Norwich UK d.rizza@uea.ac.uk

Fractal Snowflakes



Counting One reason why this is helpful

The Koch Snowflake (Helge von Koch 1904)

Davide Rizza, University of East Anglia, Norwich UK d.rizza@uea.ac.uk

Fractal Snowflakes



Counting One reason why this is helpful

I Each figure is a stage in a construction with an equilateral
triangle as an initiator. We may choose a different initiator.

I If two initiators are different, we may evolve them through the
same number of stages. What happens?

I If this number is finite, we can tell that the resulting stages
will be different. What happens after infinitely many stages?
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I Instead of talking about differences, let us focus on one
feature: the perimeter of a stage in fractal evolution.

I If we look at the result of finitely many stages from some
initiator, we can compute its perimeter.

I Let us call Pn the perimeter of the snowflake after n stages. If
n only takes finite values, we have:

lim
n→∞

Pn =∞
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Counting to (some) infinity

I If we adopt ¬, we are in a position to look at distant stages.

I Because we are operating with a computational generalisation
of finite numbers, we can in particular compute P¬.

I If we know the perimeters of two initiators, we can find out
the perimeters of their ¬-results and compare them.
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I If the initiator is an equilateral triangle with sides of length l ,
its perimeter is 3l .

I At the first iteration, each side is replaced by four sides. The
length of each is one third of l .

I When we reach the second stage, there are 3 · 4 = 12 sides.

I At the next stage, there are (3 · 4) · 4 = 48 sides.
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Some finite evolutions

I P0 = 3l .

I P1 = 4 · 3 · l
3

= 4l .

I P2 = 4 · 4 · 3 · l

32
∼ 5.3.

I In these examples the perimeter increases. In general:

Pn =
4n

3n−1
l

I Note that this formula describes the evolution of the initiator
at a terminating point n. We may set n = ¬.
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Some infinite evolutions

I P¬ =
4¬

3¬−1
l .

I P¬−1 =
4¬−1

3¬−2
l .

I P¬ − P¬−1 =
4¬−1

3¬−1
l .

I The difference between the perimeter of the ¬-th and the
preceding stage is infinitely large.

I Initiators may be infinitely significant. What about areas?
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Read this paper:
Sergeyev, Ya. D. ‘The exact (up to infinitesimals) infinite
perimeter of the Koch snowflake and its finite area’
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